• fr
  • en
  • ×

    Personnalisez votre visitePersonalize your visitPersonnalisez votre visite

    PaysCountryPays


    France
    France
    Suisse
    United Kingdom
    Deutschland
    Ireland
    International
    Français
    English
    Deutsch

    ProfilProfileProfil


    ParticulierPrivate investorInvestisseur privé
    Investisseur professionnelProfessional investorInvestisseur professionnel

    AvertissementDisclaimerAvertissement

    AccepterAcceptAccepter

    A Comparative Study of Covariance and Precision Matrix Estimators for Portfolio Selection


    24-10-2013

    M. Senneret, Y. Malevergne, P. Abry, G. Perrin, L. Jaffrès

    We conduct an empirical analysis of the relative performance of several estimation methods for the covariance and the precision matrix of a large set of European stock returns with application to portfolio selection in the mean-variance framework. We develop several precision matrix estimators and compare their performance to their covariance matrix estimators counterpart. We account for the presence of short-sale restrictions, or the lack thereof, on the optimization process and study their impact on the stability of the optimal portfolios. We show that the best performing estimation strategy, on the basis of the ex-post Sharpe ratio, does not actually depend on the fact that we choose to estimate the covariance or the precision matrix. Nonetheless, the optimal portfolios derived from the estimated precision matrix enjoy a much lower turnover rate and concentration level even in the absence of constraints on the investment process.

    > Download the presentation

    > Download the publication